HOPEWIND

HV510 Series High-Performance Inverter Selection Manual (0.75 kW-132 kW)

www.hopewind.com

Corporate Profile

Shenzhen Hopewind Electric Co., Ltd. (Stock Code: 603063) focuses on the R&D, manufacturing, sales and services of renewable energy & electric drive products, including products for wind power generation, photovoltaic generation, energy storage, hydrogen production power supply, power quality and electric drive. Furthermore, Hopewind owns integrated independent R&D and testing platforms of high-power power electrical equipment and monitoring systems. Through innovation in technology and service, Hopewind continuously creates value for customers, and has become one of China's most competitive enterprises in the renewable energy field.

In the field of industrial drive, Hopewind provides a wide range of inverters with various voltage and power classes, mainly including HV350 series low-voltage general purpose inverter, HV510 series low-voltage high-performance inverter, HV500 series lowvoltage engineering single transmission inverter, HD2000 series low-voltage engineering inverter, HD8000 series medium-voltage engineering inverter, etc., and also provides solutions for 0.75kW~22400kW low-voltage inverter and 4MVA~102MVA (single inverter) medium-voltage inverter. These products can be widely used in metallurgy, petroleum and petrochemical, mining machinery, port lifting, distributed energy generation, large-scale testing platforms, marine equipment, textiles, chemicals, cement, municipal and various other industrial applications.

[Honors]

Laboratory Qualification

Approved by CNAS

National Science and Technology Progress Award

[Quality System]

Quality Management System

Headquarter-Shenzhen

4 major R&D and manufacturing bases: Shenzhen, Suzhou, Xi'an, Heyuan 30 service bases: Deployed worldwide and providing comprehensive services for global customers

National High-tech Enterprise

Environmental Management System

Occupational Health and Safety Management System

Recommended AC Reactor Selection	•••••

HV510 Series High-Performance Inverters	04
Product Overview	04
Typical Application	04
Naming Rules	04
Technical Specifications	05
Standard Wiring Diagram ·····	08
Safety and Reliability	09
Excellent Performance	09
Extensive Functionality	10
Product Selection	12
Product Dimensions	13
Recommended AC Reactor Selection	15
Recommended Braking Resistor Selection	14
Optional Accessories	16

HV510 Series High-Performance Inverters

Technical Specifications

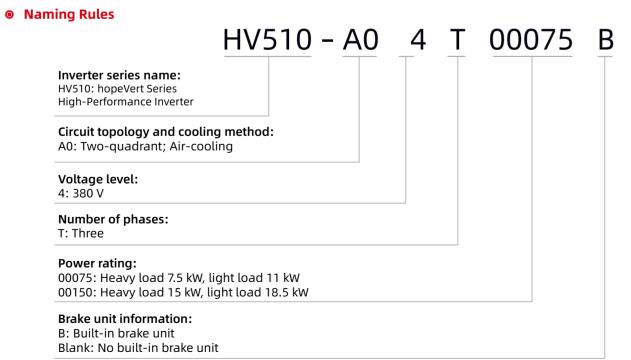
Product Overview

The HV510 series inverters (the "HV510") are Hopewind's new generation of highperformance vector inverters. They adopt new high-performance open and closed-loop vector control technology and support asynchronous motor and permanent magnet synchronous motor drive control. Their excellent quality, powerful performance, and high power density design enhance the products' ease of use, reliability, environmental adaptability, functional diversity and application flexibility in industrial scenarios. Their design criteria have been improved and their space minimized, comprehensively upgrading the user experience.

Typical Application

The HV510 can be widely used in the drives of various kinds of automated production equipment in the fields of metallurgy, lifting, petroleum, machine tools, plastics, metal products, papermaking, textile, printing, and packaging.

Petroleum



Metallurgy

Machine Tools Lifting I

Lifting Equipment

Papermaking

0	Bas	ic I	Fun	ctio	ns
---	-----	------	-----	------	----

Input voltage	380 V (-15%) - 48
Input power supply frequency	(50 Hz/60 Hz) ±5
Input voltage imbalance	≤ 3%
Output voltage	0 V to input volta
Output frequency	0 Hz-1,500 Hz
Motor type	Asynchronous m
Control mode	V/F, OLVC (open-
Speed range	1:10 for V/F; 1:10
Startup torque	VF: 100% (0.5 Hz
Torque precision	≤ ±5% under vec
Torque ripple	≤ ±5% under vec
Speed stabilizing precision	OLVC: 0.2%; CLV
Torque response	≤ 5 ms under ver
Acceleration and deceleration time	0.0 s-3200.0 s; 0
Torque boost	0.0%-30.0%
Overload capacity	G-type: 150% fo P-type: 110% for
V/F curves	Straight-line type V/F complete se
Input frequency resolution	Digital setting 0.
Acceleration and deceleration curves	Straight-line and with four types of deceleration tim
Jog control	In some applicate equipment
Torque control	Torque control s
Simple PLC and multi-segment speed	16-segment spe
Built-in PID	Easy implement
Virtual IO	Eight sets of virtu
Overvoltage and overcurrent stall control	Automatic limita to overcurrent or
DC braking	Startup DC braki
Pre-excitation	When the inverte motor that can e
Overexcitation	This can effective overvoltage aler
Speed tracking	Speed tracking is vector control ar
Protection functions	Overvoltage sup to ground, phas undervoltage, ov

480 V (+10%)/three phases

=5%

age

notor, permanent magnet synchronous motor

-loop vector control), CLVC (closed-loop vector control)

100 for OLVC; 1:1000 for CLVC

Hz); OLVC: 150% (0.5 Hz); CLVC: 200% (0 Hz)

ector control

ector control

VC: 0.01%

ector control

0.0 min-3200.0 min

or 1 min/5 min, 200% for 3 s/5 min or 1 min/5 min, 150% for 10 s/5 min

pe, multi-point type, V/F half separation mode, eparation mode

0.01 Hz, analog setting 0.01 Hz

nd S-curve acceleration and deceleration modes s of acceleration and deceleration time and one type of emergency stop me

ations, the inverter can run briefly at low speed to test the condition of the

supported during vector control

eed operation via control terminals

ntation of closed-loop process control systems

tual DI/DO for simple logic control

tation of current and voltage during operation to prevent frequent tripping due or overvoltage

king and shutdown DC braking

ter starts up, pre-excitation of the motor establishes a magnetic field inside the effectively improve the torque characteristics of the motor during startup

vely inhibit the rise of bus voltage during deceleration to avoid frequent erts, and at the same time, enables fast braking upon power failures

is supported for both asynchronous and synchronous motors and for both and V/F control

appression, undervoltage suppression, V/F overcurrent suppression, short se loss, detection of excessive speed deviation, overvoltage, overcurrent, overload, over-heating, startup, bus undervoltage, bus overvoltage, etc

Technical Specifications

Customization Functions

Restart upon power failure	The inverter resumes operation automatically when power is restored after failure
Master-slave control	Master-slave synchronous control between two or more motors
Position lock	Zero-speed hovering can be achieved under CLVC mode
Brake control	Brake control during startup and stop
Parameter copy	Backup and recovery of local user parameters With the help of an external keypad, parameters can be copied between different inverters
Parameters and key lock	Locking of parameters and some/all keys
Keypad UP/DOWN	The keypad UP/DOWN key can be configured to modify parameters
Keypad priority	Commands can be entered using the built-in keypad or an external keypad
Restart after fault auto reset	The inverter can be set to restart automatically after fault auto reset
Stop speed detection	Two stop speed detection modes are supported: detection based on the speed setting value and detection based on the speed feedback value
Braking usage	Both braking and braking resistor protection through braking resistor on-off controlled by frequency
Energy-saving operation	When the motor runs at light load/no load, reducing the output voltage (motor flux) can reduce wear and tear on the motor, and the noise generated by the motor
Timing control	Timing control function allows for a time range of 0-65,000 s/m/h and supports 3 different unit settings
Fixed length control	Control for a given length
Hibernation and wakeup	Used in water supply scenarios
Fan control	Three fan control modes are supported: always working, working automatically and working during inverter running
Overmodulation	Used to increase the inverter output voltage
Random PWM	Used to mitigate motor noise
Multi-motor switchover	Switchover between 2 groups of motor parameters
Multiple encoder types supported	Incremental, resolver, and absolute value
Encoder running in redundancy mode	Automatic switching to OLVC mode in event of encoder failure under CLVC mode
Statistics	Current running time, current power-on time, accumulative running time, accumulative power- on time, accumulative fan running time
User-defined parameters	Parameters can be viewed and changed through the user-defined menu mode and non- continuous addresses can be continuously read and written
Background debugging software	hopeInsight: Supports inverter parameter operation and virtual oscilloscope function. The virtual oscilloscope can perform graphical monitoring of the internal state of the inverter, which, coupled with extensive background monitoring functionality, facilitates on-site data acquisition and debugging
Fault recording	Used to facilitate on-site problem location and analysis
Various communication modes	Modbus RTU (standard); Profibus-DP, CANopen, Profinet IO, Modbus TCP/IP, EtherCAT, EtherNet/ IP (optional)
Various optional accessories	External LED keypad, encoder card, communication card, I/O terminal expansion card, etc

Input/Output Functions

Command sources	Switchover betwe
Frequency sources	Supporting switch reference (DI5), m frequency source
Input terminal functions	66 kinds of DI inpu
Output terminal functions	48 kinds of DO ou functions for statu
Analog input terminals	AI1, AI2: 0 V-10 V/
Digital input terminals	DI1-DI5: 5 program sourcing and sink DI5 supports high
Digital output terminals	2 open collector o current load capa DO1 supports hig
Analog output terminals	Outputs 1-channe
Relay output	Outputs 1-channe
Communication terminals	1 channel (A/B), s
Expansion capability I/O terminal card (optional)	DI6-DI8: 3 program coupled isolation, DO3: 1 open colle AI3: 1 analog inpu AO2, AO3: 2 analo 1 relay output cha 1 motor temperat

Keypad Display and Operation

LED	Parameter displa
External LED keypad	Parameter displa
Parameter copy	Quick upload an
Key function selection	The MF.K key can

Environmental Conditions

Altitude	≤ 1000 m: no ne 1000-3000 m: de
Ambient temperature	-25°C to +40°C (a
Humidity	15%-95% with n
Vibration	3M3, IEC60721-3
Storage temperature	-40°C to +70°C
Place of use	Indoors with no or conductive pa
Installation	Wall-mounted
Protection rating	IP20
Cooling method	Air-cooling

ween keypad, terminal, and communication supported

tchover between 11 sources: digital setting, analog inputs (AI1/AI2/AI3), pulse multi-reference, simple PLC, PID, communication, terminal UP/DOWN and ce bound to command source

nput terminal functions for logic control

output terminal functions and 23 kinds of AO and HDO output terminal atus indication

V/0 (4) mA-20 mA

rammable digital input terminals with light-coupled isolation, compatible with nking inputs

gh-speed pulse input with a maximum input frequency of 100 kHz

r output channels; output voltage range: 0 V-24 V; pacity: 50 mA

igh-speed pulse output with a maximum output frequency of 100 kHz

nel current/voltage: 0 V-10 V/ 0(4) mA-20 mA

nnel Form C contact: NO+NC

, supporting RS485 communication cable connection

rammable digital input channels with light-

on, compatible with sourcing and sinking inputs

llector output channel

nput channel supporting -10 V to +10 V input alog output channels supporting 0-10 V/0-20 mA output

hannel (NO+NC)

rature sampling channel supporting PT100, PT1000 and KTY84

olay and setting

olay, setting and copy

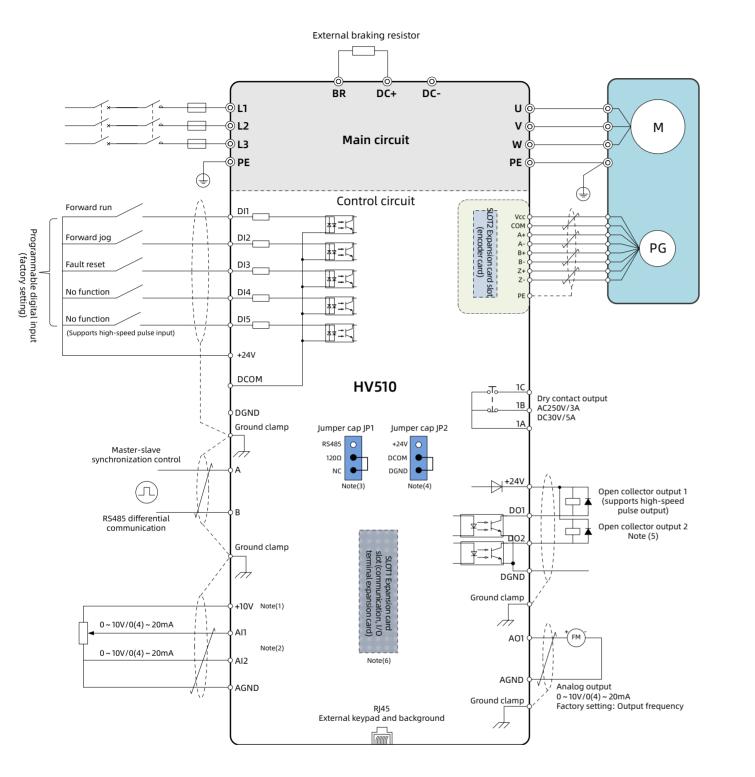
and download of parameters via external LED keypad

an be customized to select specific functions

leed for derating

derating by 1% per 100 m increased

(allowed to run at 40°C to 55°C with derating)


no condensation

-3-3

o direct sunlight, flammable, corrosive gases or liquids, particles

Standard Wiring Diagram

Note (1): The maximum output of +10 V port is 25 mA.

Note (2): Internal resistance of AI1 and AI2 ports (in current mode): 500 Ω .

Note (3): The activation ports for RS485 terminal resistance (120 Ω).

Note (4): For terminals DI1-DI5, NPN or PNP transistor signals can be selected as inputs, and the bias voltage can be selected from the inverter's internal power supply (+24 V terminal) or external power supply (DGND terminal).

Note (5): When the digital output terminals drive the relay, a freewheel diode needs to be added with correct polarity at both ends of the relay coil,

otherwise, the internal circuit may be damaged. The driving capacity is not more than 50 mA.

Note (6): The optional I/O terminal expansion card and the communication expansion card share the same expansion card slot, and cannot be installed and used at the same time.

Reliable structural design

· Innovative independent air duct design improves the product's heat dissipation performance and environmental adaptability · Compact type design minimizes the installation space in the cabinet

Professional thermal design

- · Efficient and accurate thermal simulation platform software is adopted to ensure the thermal reliability of the machine
- · Advanced thermal testing together with verification techniques and devices effectively verify the theoretical results of the thermal design

Rigorous temperature rise test

· A stringent full-load and overload verification test program is adopted for temperature rise testing on the machine

· High-temperature load aging test for the product before leaving the factory effectively prevents and intercepts component failures

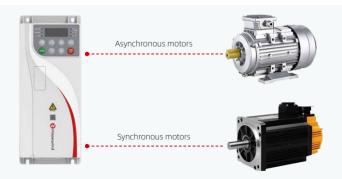
Effective anti-interference design

• Built-in C3 filter can effectively suppress high-frequency harmonics generated by the inverter. · EMC filter ungrounded design effectively reduces leakage current to ground

Comprehensive protection functions

• The entire series supports multiple protections against overvoltage, undervoltage, overcurrent, phase loss, overspeed, locked-motor, overload, motor temperature, short circuit to ground, etc

· Based on the severity of the type of fault, the inverter can be set to report alarm, shut down or continue running, which makes daily maintenance more convenient



Advanced motor drive technology

· Supports both asynchronous and synchronous motors to achieve high-performance current vector control

- · Supports switchover between two groups of motor parameters
- · Supports speed and torque mode control of motors

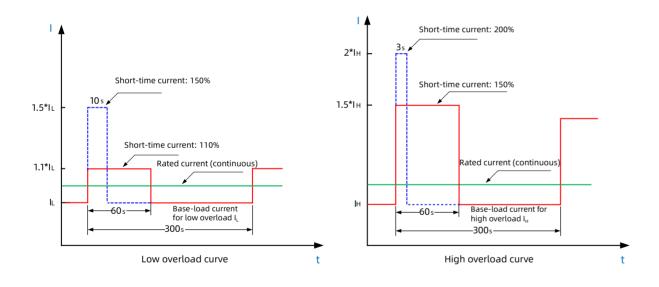
Excellent Performance

Extensive auto-tuning function

· Accurate auto-tuning ability of motor parameters: improves motor control accuracy and response speed · Comprehensive auto-tuning modes: support motor auto-tuning needs in different scenarios

Output Complete braking function

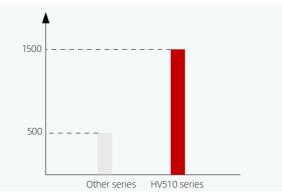
· Supports DC braking at startup/stop


· Supports overexcitation function which can effectively suppress the rise of bus voltage during deceleration, thereby avoiding frequent overvoltage faults

• The entire series can be configured with a built-in brake unit, saving installation space and electrical costs

Powerful overload capacity

· High overload capacity can meet the need for long-term reliable operation under extreme load conditions


- \cdot Low overload: 110% of I_L for 60s or 150% of I_L for 10s in a duty cycle
- \cdot High overload: 150% of I_H for 60s or 200% of I_H for 10s in a duty cycle

Extensive Functionality

High frequency output

· Output up to 1,500 Hz, suitable for high-frequency, high-speed motors

Extensive Functionality

Oiversified expansion functions

· Communication card: supports major communication protocols, including Profibus-DP, Profinet IO, CANopen, Modbus TCP/IP, Ethercat, and EtherNet/IP

· Encoder card: supports the wiring of the incremental encoder and resolver

- · I/O terminal card: provides more terminal functions
- · External keypad: makes debugging easier and simpler

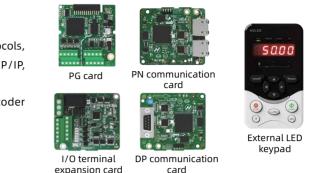
Note: The optional I/O terminal expansion card and the communication expansion card share the same expansion card slot, and cannot be installed and used at the same time.

Background guick debugging software

· Supports inverter event recording and virtual oscilloscope function

Supports parameter editing and status monitoring, to facilitate debugging and maintenance

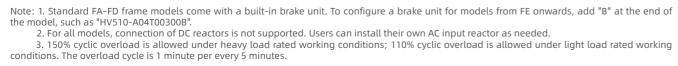
Parameter interface

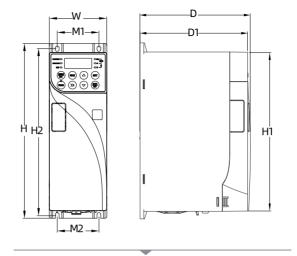


Special application software functions

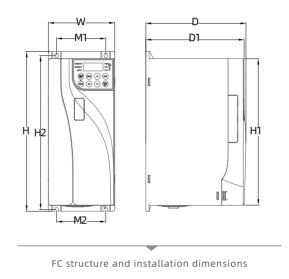
- · Master-slave control: suitable for master-slave synchronous control between two or more motors
- · Simple PLC: supports cyclic operation of up to 16 segments with fixed time and speed
- PID: suitable for closed-loop systems for process control such as constant temperature, constant pressure, tension, etc · Virtual I/O: easy internal logic control by means of simple settings

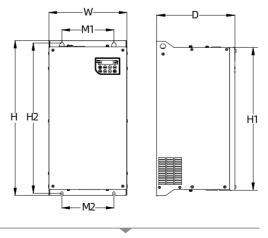
YMaic

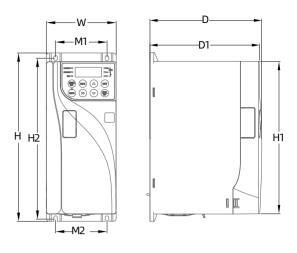

- · Restart upon power failure: The inverter resumes operation automatically when power is restored after failure
- Multi-motor switchover: Two groups of motor parameters can be stored to enable switchover
- · Position lock: Zero-speed hovering can be achieved under CLVC mode
- The wobble function is applicable to textile and chemical fiber processing equipment, which can improve the quality of spindle winding
- · Random PWM depth: mitigates the harsh motor noise
- Encoder running in redundancy: automatic switching to OLVC mode in event of encoder failure under CLVC mode



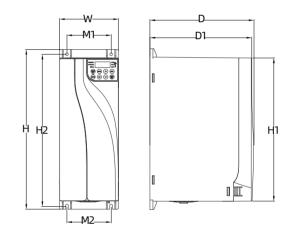
				•	ault i		-					
E KARAB		52 0.219	四 示波8	1 2548					G		6 \$	-
18:98 ¹ 8	件记录	923)m	9 Bitts	MrBa								
通道	195	Ch1+0.0,×1		Ch2+0.0,×1.00		0.0,×1.000	Ch4+0.0,×1.000		h5+0.0,×1			0.×0.500
1012.5H010(0.1A)		Ch7+0.0,×1	1.000	Ch8+0.0,×1.00		0.0.×0.500	Ch10+0.0,+1.000	0	h11+0.0,×	1.000	Ch12+	0.0,=3.00
10年35年1月第(0.1A)	9000				129	(0)_118_2017-0	9-26_19-36-27.flash					
BR.58018(0.1A)												
0.568 8	7300											·
57	6450			····•				-	· ·····			
fg_CR	5600										······	······
M_CR	4750 3900						and the party of	-				
tor Isd(Q12)	3050				1							
tor Isq(Q12)	2200			1	1.							
141	1350			·····		New Allowing	-	-	·····			
	500				Concession of the local division of the loca	R Mar		52			-	
	-350			1				- Here				
3816	-1200	1 24		1								
	-2900				1							
	-3750	a										

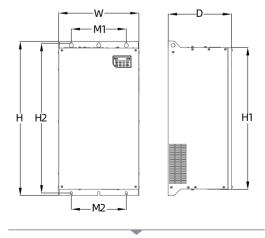

	Pro	bd	uct	Se	lect	ion


Rated voltage: three phases 380 Vac/50 Hz									
	Heavy	y Load	Light						
Model	Rated Power (kW)	Rated output current (A)	Rated power (kW)	Rated output current (A)	Frame Type				
HV510-A04T00007B	0.75	2.5	1.5	4.2					
HV510-A04T00015B	1.5	4.2	2.2	5.8	FA				
HV510-A04T00022B	2.2	5.8	-	-					
HV510-A04T00040B	4	9.5	5.5	13	FB				
HV510-A04T00055B	5.5	13	-	-	FB				
HV510-A04T00075B	7.5	17	11	25	FC				
HV510-A04T00110B	11	25	-	-	FL				
HV510-A04T00150B	15	32	18.5	38					
HV510-A04T00185B	18.5	38	22	46	FD				
HV510-A04T00220B	22	46	-	-	·				
HV510-A04T00300(B)	30	60	37	75					
HV510-A04T00370(B)	37	75	45	91	FE				
HV510-A04T00450(B)	45	91	55	125	-				
HV510-A04T00550(B)	55	125	75	150	FF				
HV510-A04T00750(B)	75	150	90	180	FF				
HV510-A04T00900(B)	90	180	110	210					
HV510-A04T01100(B)	110	210	132	250	FG				



FA structure and installation dimensions




FE FF structure and installation dimensions

FB structure and installation dimensions

FD structure and installation dimensions

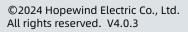
FG structure and installation dimensions

Product Dimensions

Frame	Width (mm)	Height (mm)	Depth (mm)	Mounting Hole Horizontal Spacing M1(mm)	Mounting Hole Horizontal Spacing M2(mm)	Mounting Hole Vertical Spacing H2 (mm)	Mounting Hole DiameterΦ (mm)	Net Weight(kg)
FA	76	232	175.5	55	55	221	5	1.7
FB	95	232	175.5	70	70	221	5	1.8
FC	121.5	272	187	90	90	262	6	3.3
FD	140	377	237	105	105	357	6.5	5.5
FE	240	500	225	160	160	485	7	16
FF	270	615	240	200	200	594	9	24
FG	335	712	255	230	230	688	9	38

Recommended AC Reactor Selection

Model	AC Input Reactor		AC Output Reactor	
	Inductance (mH)	Current (A)	Inductance (mH)	Current (A)
HV510-A04T00007B	8	5	2	5
HV510-A04T00015B	4	7	1.6	6
HV510-A04T00022B	3	12	1.2	10
HV510-A04T00040B	1.5	16	0.7	14
HV510-A04T00055B	1.2	20	0.5	18
HV510-A04T00075B	0.8	32	0.4	26
HV510-A04T00110B	0.6	45	0.25	32
HV510-A04T00150B	0.4	55	0.2	40
HV510-A04T00185B	0.35	65	0.18	48
HV510-A04T00220B	0.3	80	0.15	60
HV510-A04T00300(B)	0.2	100	0.11	75
HV510-A04T00370(B)	0.18	120	0.09	95
HV510-A04T00450(B)	0.15	145	0.07	130
HV510-A04T00550(B)	0.11	200	0.055	160
HV510-A04T00750(B)	0.09	220	0.04	190
HV510-A04T00900(B)	0.07	275	0.035	220
HV510-A04T01100(B)	0.06	330	0.03	260


Recommended Braking Resistor Selection

Inverter model Indicators	Minimum braking resistance (Ω)	Maximum braking current (A)	Recommended resistance R (Ω) power P	Braking unit
HV510-A04T00007B	120	7	750Ω/150W	-
HV510-A04T00015B	80	10.5	350Ω/320W	
HV510-A04T00022B	80	10.5	250Ω/450W	
HV510-A04T00040B	47	17.5	150Ω/750W	Built-in (standard)
HV510-A04T00055B	29.6	28	150Ω/750W	
HV510-A04T00075B	29.6	28	100Ω/1125W	
HV510-A04T00110B	29.6	28	100Ω/1125W	
HV510-A04T00150B	29.6	28	30Ω/3750W	
HV510-A04T00185B	29.6	28	30Ω/3750W	
HV510-A04T00220B	24	35	30Ω/3750W	
HV510-A04T00300(B)	24	35	25Ω/4500W	Built-in (optional)
HV510-A04T00370(B)	16	52.5	25Ω/4500W	
HV510-A04T00450(B)	16	52.5	25Ω/4500W	
HV510-A04T00550(B)	8	105	10Ω/14000W	
HV510-A04T00750(B)	8	105	10Ω/14000W	
HV510-A04T00900(B)	5.6	157	6Ω/21000W	
HV510-A04T01100(B)	5.6	157	6Ω/21000W	

Optional Accessories

Model	Accessory Name	Function and Use
HVLED	External LED keypad (with mounting base)	Supports parameter setting, viewing, and copying
HVCOM-USB	Communication adapter	Enables high-speed communication between hopelnsight (the background quick debugging software of the inverter) and a computer
HVIO-01	I/O terminal expansion card	Supports 3 DI input channels, 1 DO output channel, 1 AI input channel (-10 V-10 V), 2 AO output channels (0-10 V/0-20 mA), 1 temperature sampling channel (PT100, PT1000, KTY84), and 1 relay output channel
HVPG-ABZ-01	Incremental encoder expansion card	Supports the wiring of the ABZ incremental encoder
HVPG-ROT	Resolver expansion card	Supports the wiring of the resolver
HVCOM-DP-H	Profibus-DP communication card	Support Profibus-DP bus communication
HVCOM-PN-H	Profinet communication card	Supports Profinet IO bus communication
HVCOM-CA	CANopen communication card	Supports CANopen bus communication
HVCOM-TP-H	Modbus TCP/IP communication card	Supports Modbus TCP/IP communication
HVCOM-EC-H	EtherCAT communication card	Supports EtherCAT communication
HVCOM-EN-H	EtherNet/IP communication card	Supports EtherNet/IP communication

Office Address: Building 11, Second Industrial Zone, Guanlong Village, Xili Street, Nanshan District, Shenzhen, P.R.China Postal Code: 518055 Customer Service Hotline: 400-8828-705 Phone: +86-755-86026786 Website: www.hopewind.com

